Minimum Feature Selection for Epileptic Seizure Classification using Wavelet-based Feature Extraction and a Fuzzy Neural Network

نویسندگان

  • Sang-Hong Lee
  • Joon S. Lim
چکیده

This paper proposes a method that uses a wavelet transform (WT) and a fuzzy neural network to select the minimum number of features for classifying normal signals and epileptic seizure signals from the electroencephalogram (EEG) signals of people with epileptic symptoms and those of healthy people. WT was used to select the minimum number of features by creating detail coefficients and approximation coefficients from EEG signals. 40 initial features were obtained from the created wavelet coefficients using statistical methods, including frequency distributions and the amounts of variability in frequency distributions. We obtained 32 minimum features with the highest accuracy from the 40 initial features by using a non-overlap area distribution measurement method based on a neural network with weighted fuzzy membership functions (NEWFM). NEWFM obtains the bounded sum of weighted fuzzy membership functions (BSWFM) for the 32 minimum features to identify fuzzy membership functions for the 32 features. Using these 32 minimum features as inputs in the NEWFM resulted in a performance sensitivity, specificity, and accuracy of 99.67%, 100%, and 99.83%, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Domain Approximate Entropy-Based Epileptic Seizure Detection

The electroencephalogram (EEG) signal plays an important role in the detection of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a timeconsuming analysis of the entire length of the EEG data by an expert. The aim of this work is to develop a new method for automatic detection of EEG patterns using ...

متن کامل

Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction

Intelligent computing tools such as artificial neural network (ANN) and fuzzy logic approaches are demonstrated to be competent when applied individually to a variety of problems. Recently, there has been a growing interest in combining both these approaches, and as a result, neuro-fuzzy computing techniques have been evolved. In this study, a new approach based on an adaptive neuro-fuzzy infer...

متن کامل

Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network

Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...

متن کامل

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

Classification of EEG Physiological Signal for the Detection of Epileptic Seizure by Using DWT Feature Extraction and Neural Network

EEG (Electroencephalogram) is a technique for identifying neurological disorders. There are various neurological disorders like Epilepsy, brain cancer, etc. Feature extraction and classification of electroencephalogram (EEGs) signals for (normal and epileptic) is a challenge for engineers and scientists. Various signal processing techniques have already been proposed for classification of non-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013